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Abstract 
 
This work concerns the design and development of a six degree of freedom Haptic device. The Haptic 
device is used as the master arm in the teleoperation purposes. For the experimentation, the stewart 
platform, other parallel mechanism, is used as the slave arm. The force reflex from the slave arm is 
transmitted through Tendon-Pulley train of the master arm. The virtual guidance can be implemented 
in the Master arm to improve the maneuverability for the operators as well as the low inertia, friction 
force, and backlash are minimized in the design. The singularity is also eliminated. The invert, forward 
kinematics, and Jacobian of the master arm is derived. The closed-form solution of the forward 
kinematics can be obtained by installing 9 encoders, instead of 6. The end-point of the master arm is 
sent to the slave arm. The slave arm will transform to the end-point to it joint variables by using the 
invert kinematics of the slave arm. The experimental results show that the Haptic device is capable of 
controlling the stewart plate form and can be used for other parallel mechanisms as well.  
 
1) Introduction 

Conventional robot arms are typically controlled by preprogramming of the desired paths within 
the robot workspace. This will limit the capability of the robot arm. There are some applications which 
we cannot form the desired paths at the beginning. The manual manipulation is needed to help the 
operator to control the manipulator arm. In this case the master-slave or teleoperation is required to 
fulfill the task. Besides the path following control of the teleoperation, the information of the force 
react at the slave should be reflected back to the operator at the master side. This is the Haptic system 
characteristic. In this work we developed a 6 degree of freedom Master-Slave Human-Assisted 
manipulator arm with force reflected system or a 6 DOF Haptic system as shown in the figure 1. The 
mechanism is a singular-free parallel mechanism. The relaxation of kinematics similarity between the 
master and slave is assumed. We also introduce virtual guidance to improve the maneuverability for 
the operators. The virtual guidance can be a desired path or a boundary of the desired workspace. And 
any limited control volume can also be controlled or specified by virtual guidance technique. 
 

   
Figure 1.  The 6 DOF Haptic System as the Master and the Stewart as the Slave 

 
2) The Master-Slave System 

Figure 1 shows the Master-Slave arm developed for this project. The master arm is a 6 DOF 
with tendon-pulley train driving mechanism. The mechanism is back drivable. The tendon-pulley 



system used in this mechanism has the same functions as the pulley-belt with fixed or variable distance 
between the two unparallel rotating axes. As shown in figure 2, for the sliding-rotating link, we 
introduce a unique design of the tendon-pulley system which supports decouple motion of translation 
and rotation within the same driving mechanism. 
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Figure 3. The Configuration of the Coordinate Frame of the Haptic Arm

the base (frame 0 or frame B) and center of the link or the origin of the link coordinate f

 
 From figure 3, for each link, i  = 1, 2, 3. the br  represents the distance betwee
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id represents the distance of the sliding joint of link i, and  is the length of link i as shown in the 
figure. ( ). From the figure, it can be shown that , ,  
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2 θθθ . And we will define that cos=c  and sin=s . From figure 3, the forward 

kinematics can be derived starting for base frame (frame 0 or frame B). Frame 1 is the origin of the 
prismatic joint and frame 2 is attached to the origin of the sliding joint which moved in the direction of 
the prismatic joint. The origin of frame 3 and frame 4 are located at the same position of the origin of 
the frame 2 and attached to the rotating joints 1 and 2 respectively as illustrated in the figure 2. And 
frame 5 is attached to the spherical joint. Figure 3 shows the configuration of all the coordinate 
system. The homogeneous transformation of the coordinate frame j to the coordinate frame j+1 of link 
i can be written as following ( and frame 0 is frame B)        4,3,2,1,0=j
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So, the total transformation matrix of frame B to frame 5 of link i can be written 
as , or iiiiiBiB TTTTTT 4
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                                                    (1) 
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So, the position vector of the coordinate frame 5 with respect to coordinate frame B of link i can be 
written as 
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Figure 2 shown the vector position with respect to base frame and the corresponding 
homogeneous transformation can be written as  
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Invert Kinematics 

Z

X

Y

P
v

br
v

mr
v

L
v

d
v

B
v

1θ

2θ

OB

X

Y
Z

OM

iB P
v

5

 
 

mjrv jP

jev

jf
v

jgv

fjrv
gjrv

j3θ&

j4θ&

jd&

bjrv

 
Figure 4. The Necessary Vectors Needed for 
Deriving Invert Kinematics. 

Figure 5.  The Position Vector of  Link j 

 
Figure 4 defined the position vectors needed for the invert kinematics as following: 

Position vector  represents the vector form the origin  to the endpoint origin   [ TZYXP =
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where  is derived previously, so  can be written as TB
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Equation (2) – (4) is used to solve  as following: multiply both sides of equation (3) and (4) with 
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Similarly, multiply both side of equation (2) and (4) with  and  respectively, then sum 
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From equation (5) and (6), we will obtain  as following i
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Similarly, we can obtain  
 

( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++
=

Lc
BsBccBs

i

i
y

ii
x

iii
z

i
i

3

1122
4 arcsin

θ
θθθθ

θ      (8) 

 
And  can be derived from equation (4) as  id ( ) ( )iiiiiiii

z cθL+dcθ+cθsθcθsθB 242432=  
So,  

( )
i

iiiiii
zi

cθ
Lcθ+cθsθcθsθBd

2

42432−
=       (9) 

Jacobian 
The Jacobian is the relationship between the twist velocity of the moving platform and the 

velocity of the joint variables where the actuators are attached. From the relationship , the 
matrix  are the Jacobian matrix of the closed-loop chain (parallel mechanism) and  
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From the above equation with equation (11) and the equation (13), we will obtain  
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From the above equation with equation (11) and the equation (17), we will obtain 
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The relationship of the force at the endpoint of the Haptic system and the joint torque for the 

parallel mechanism can be written as 
τTJF =  

where  is the force apply at the endpoint (top plate) of the 

Haptic device. And
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So, the Jacobian matrix is  

BAJ 1−=  
So, the singularity of the system will occur at 0)det( =A  or 0)det( =B  or . It can be 
shown that, for the purposed mechanism, there is no singularity. 

0)det( 1 =− BA

 
3) The Controller 

Figure 6 shows the connection between the master-arm or the Haptic system and the slave-arm 
(the Stewart platform). The endpoint position and orientation of the Haptic system will be transformed 
to the joint command of the Stewart platform. The controller handles both position control and force 
control.  

Figure 7 is the diagram to show the master-slave control system. The operator will control or 
maneuver the master arm though the control stick. The virtual wall (will be explained in next section) 
will be specified in advance if necessary. When the control stick hits the virtual wall, the reaction force 
F, which reacts to the operator, will be generated by the controller in the Cartesian space of the Haptic 
system. The reaction force consists of 2 components, the force normal to the virtual wall and the 
viscous force generated by the controller to prevent the control stick move to fast. The reaction force 
F, in Cartesian space, can be transformed into the joint space by using the Jacobian matrix. The 
friction force compensation is also included in the control system as shown in the figure 7. When the 



control stick is inside the working area or in the free area, the reaction force applied at the control stick 
will only consist of the viscous force and friction compensation force. The information from the 
encoders at each joint of the master arm will be used to calculate the desired path motion, translation 
and orientation, of the slave. The detail of the kinematics of the slave arm can be consulted from ref 
[1]. Then the joint variables of each links of the slave arm can be calculated by using the inverse 
kinematics. The PID control is used in the control loop of the slave arm as shown in figure 7. Then, the 
position and orientation error of the slave arm are obtained from the comparison of the measurement 
values with the input or the reference values.   
 

 
Figure 6.  The Connection between the Master-Arm (Haptic) and the Slave-Arm (Stewart)  

 

 
Figure 7 The Structure of the Control System. 

 
 

 



4) VIRTUAL WALL 
The concept of virtual wall is to specify the working area of the master arm virtually. This will 

help the operator to work in the specific area more convenience. Figure 8 shows the circular working 
area. The virtual wall is defined by a function, f(x,y,z) = constant. When the operator move the master 
arm contact to the virtual wall, the reaction force, F, will be generated to against the operation motion.   
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Figure 8. The circular working area Figure 9.The Control Stick Are Beyond The 

Virtual Wall 
 
From figure 9, the force F can be evaluated from  
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V  =  velocity of the control stick 
ndrK v)( 1 = reaction force normal to the wall 
nVK v)( 2 = viscous force generated by the controller 

K1, K2 = amplifier gains   
 
So, the force F can be written as 
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5) Experimental Results 

Table 1 shows the maximum error measure at the endpoint of the Stewart platform. The 
experiment is done with 300 Hz., sampling frequency, for the Haptic system and 20 Hz for the stewart 
platform. The sampling frequencies are limited due to the hardware capability. The error will be much 
improved if we better controller with higher sampling frequencies. 

Figure 10 and 11 are the 3D and 2D diagram, respectively, of the endpoint position of the Haptic 
arm with circular virtual wall. The center point of the circular virtual wall is at x,y,z = 0. From figure 
11, we can estimate the error from the virtual wall is approximately 4 mm. This is due to the limitation 
of the controller hardware of the Haptic system and the stewart platform. This error can be improved if 



we can increase the sampling frequencies of both the Haptic system and the stewart platform. 
Otherwise the digital controller design technique is needed for studying the sampling time effect to the 
controlled system.    
 

Link i Error (mm) 
1 2.07 
2 3.85 
3 1.34 
4 1.08 
5 1.51 
6 2.52 

Table 1. The Maximum Error of the Endpoint (Top Plate) of the Stewart Platform 
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Figure 10. The 3D Diagram of the endpoint of the 
Haptic Arm with Circular Virtual Wall (Cylindrical 
Volume) 

Figure 11. The 2D Diagram of the endpoint of 
the Haptic Arm with Circular Virtual Wall 
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